About the nuclear explosion and radiation

In nuclear explosions, about 90 percent of the energy is released in less than one millionth of a second. Most of this is in the form of the heat and shock waves which produce the damage. It is this immediate and direct explosive power which could devastate the urban centers in a major nuclear war.

Compared with the immediate colossal destruction suffered in target areas, the more subtle, longer term effects of the remaining 10 percent of the energy released by nuclear weapons might seem a matter of secondary concern. But the dimensions of the initial catastrophe should not overshadow the after-effects of a nuclear war. They would be global, affecting nations remote from the fighting for many years after the holocaust, because of the way nuclear explosions behave in the atmosphere and the radioactive products released by nuclear bursts.

When a weapon is detonated at the surface of the earth or at low altitudes, the heat pulse vaporizes the bomb material, target, nearby structures, and underlying soil and rock, all of which become entrained in an expanding, fast-rising fireball. As the fireball rises, it expands and cools, producing the distinctive mushroom cloud, signature of nuclear explosions.

The altitude reached by the cloud depends on the force of the explosion. When yields are in the low-kiloton range, the cloud will remain in the lower atmosphere and its effects will be entirely local. But as yields exceed 30 kilotons, part of the cloud will punch into the stratosphere, which begins about 7 miles up. With yields of 2-5 megatons or more, virtually all of the cloud of radioactive debris and fine dust will climb into the stratosphere. The heavier materials reaching the lower edge of the stratosphere will soon settle out, as did the Castle/Bravo fallout at Rongelap. But the lighter particles will penetrate high into the stratosphere, to altitudes of 12 miles and more, and remain there for months and even years. Stratospheric circulation and diffusion will spread this material around the world.
Both the local and worldwide fallout hazards of nuclear explosions depend on a variety of interacting factors: weapon design, explosive force, altitude and latitude of detonation, time of year, and local weather conditions.

All present nuclear weapon designs require the splitting of heavy elements like uranium and plutonium. The energy released in this fission process is many millions of times greater, pound for pound, than the most energetic chemical reactions. The smaller nuclear weapon, in the low-kiloton range, may rely solely on the energy released by the fission process, as did the first bombs which devastated Hiroshima and Nagasaki in 1945. The larger yield nuclear weapons derive a substantial part of their explosive force from the fusion of heavy forms of hydrogen--deuterium and tritium. Since there is virtually no limitation on the volume of fusion materials in a weapon, and the materials are less costly than fissionable materials, the fusion, "thermonuclear," or "hydrogen" bomb brought a radical increase in the explosive power of weapons. However, the fission process is still necessary to achieve the high temperatures and pressures needed to trigger the hydrogen fusion reactions. Thus, all nuclear detonations produce radioactive fragments of heavy elements fission, with the larger bursts producing an additional radiation component from the fusion process.

The nuclear fragments of heavy-element fission which are of greatest concern are those radioactive atoms (also called radionuclides) which decay by emitting energetic electrons or gamma particles. (See "Radioactivity" note.) An important characteristic here is the rate of decay. This is measured in terms of "half-life"--the time required for one-half of the original substance to decay--which ranges from days to thousands of years for the bomb-produced radionuclides of principal interest. (See "Nuclear Half-Life" note.) Another factor which is critical in determining the hazard of radionuclides is the chemistry of the atoms. This determines whether they will be taken up by the body through respiration or the food cycle and incorporated into tissue. If this occurs, the risk of biological damage from the destructive ionizing radiation (see "Radioactivity" note) is multiplied.

Probably the most serious threat is cesium-137, a gamma emitter with a half-life of 30 years. It is a major source of radiation in nuclear fallout, and since it parallels potassium chemistry, it is readily taken into the blood of animals and men and may be incorporated into tissue.

Other hazards are strontium-90, an electron emitter with a half-life of 28 years, and iodine-131 with a half-life of only 8 days. Strontium-90 follows calcium chemistry, so that it is readily incorporated into the bones and teeth, particularly of young children who have received milk from cows consuming contaminated forage. Iodine-131 is a similar threat to infants and children because of its concentration in the thyroid gland. In addition, there is plutonium-239, frequently used in nuclear explosives. A bone-seeker like strontium-90, it may also become lodged in the lungs, where its intense local radiation can cause cancer or other damage. Plutonium-239 decays through emission of an alpha particle (helium nucleus) and has a half-life of 24,000 years.

To the extent that hydrogen fusion contributes to the explosive force of a weapon, two other radionuclides will be released: tritium (hydrogen-3), an electron emitter with a half-life of 12 years, and carbon-14, an electron emitter with a half-life of 5,730 years. Both are taken up through the food cycle and readily incorporated in organic matter.

Three types of radiation damage may occur: bodily damage (mainly leukemia and cancers of the thyroid, lung, breast, bone, and gastrointestinal tract); genetic damage (birth defects and constitutional and degenerative diseases due to gonodal damage suffered by parents); and development and growth damage (primarily growth and mental retardation of unborn infants and young children). Since heavy radiation doses of about 20 roentgen or more (see "Radioactivity" note) are necessary to produce developmental defects, these effects would probably be confined to areas of heavy local fallout in the nuclear combatant nations and would not become a global problem.
Source: Gutenberg

0 Comments:

Post a Comment