Worldwide effects of nuclear war

A nuclear war would involve such prodigious and concentrated short term release of high temperature energy that it is necessary to consider a variety of potential environmental effects.
It is true that the energy of nuclear weapons is dwarfed by many natural phenomena. A large hurricane may have the power of a million hydrogen bombs. But the energy release of even the most severe weather is diffuse; it occurs over wide areas, and the difference in temperature between the storm system and the surrounding atmosphere is relatively small. Nuclear detonations are just the opposite--highly concentrated with reaction temperatures up to tens of millions of degrees Fahrenheit. Because they are so different from natural processes, it is necessary to examine their potential for altering the environment in several contexts.


High Altitude Dust
It has been estimated that a 10,000-megaton war with half the weapons exploding at ground level would tear up some 25 billion cubic meters of rock and soil, injecting a substantial amount of fine dust and particles into the stratosphere. This is roughly twice the volume of material blasted loose by the Indonesian volcano, Krakatoa, whose explosion in 1883 was the most powerful terrestrial event ever recorded. Sunsets around the world were noticeably reddened for several years after the Krakatoa eruption, indicating that large amounts of volcanic dust had entered the stratosphere.
Subsequent studies of large volcanic explosions, such as Mt. Agung on Bali in 1963, have raised the possibility that large-scale injection of dust into the stratosphere would reduce sunlight intensities and temperatures at the surface, while increasing the absorption of heat in the upper atmosphere.
The resultant minor changes in temperature and sunlight could affect crop production. However, no catastrophic worldwide changes have resulted from volcanic explosions, so it is doubtful that the gross injection of particulates into the stratosphere by a 10,000-megaton conflict would, by itself, lead to major global climate changes.



Ozone
More worrisome is the possible effect of nuclear explosions on ozone in the stratosphere. Not until the 20th century was the unique and paradoxical role of ozone fully recognized. On the other hand, in concentrations greater than I part per million in the air we breathe, ozone is toxic; one major American city, Los Angeles, has established a procedure for ozone alerts and warnings. On the other hand, ozone is a critically important feature of the stratosphere from the standpoint of maintaining life on the earth.
The reason is that while oxygen and nitrogen in the upper reaches of the atmosphere can block out solar ultraviolet photons with wavelengths shorter than 2,420 angstroms (A), ozone is the only effective shield in the atmosphere against solar ultraviolet radiation between 2,500 and 3,000 A in wavelength. (See note 5.) Although ozone is extremely efficient at filtering out solar ultraviolet in 2,500-3,000 A region of the spectrum, some does get through at the higher end of the spectrum. Ultraviolet rays in the range of 2,800 to 3,200 A which cause sunburn, prematurely age human skin and produce skin cancers. As early as 1840, arctic snow blindness was attributed to solar ultraviolet; and we have since found that intense ultraviolet radiation can inhibit photosynthesis in plants, stunt plant growth, damage bacteria, fungi, higher plants, insects and annuals, and produce genetic alterations.
Despite the important role ozone plays in assuring a liveable environment at the earth's surface, the total quantity of ozone in the atmosphere is quite small, only about 3 parts per million. Furthermore, ozone is not a durable or static constituent of the atmosphere. It is constantly created, destroyed, and recreated by natural processes, so that the amount of ozone present at any given time is a function of the equilibrium reached between the creative and destructive chemical reactions and the solar radiation reaching the upper stratosphere.
The mechanism for the production of ozone is the absorption by oxygen molecules (O2) of relatively short-wavelength ultraviolet light. The oxygen molecule separates into two atoms of free oxygen, which immediately unite with other oxygen molecules on the surfaces of particles in the upper atmosphere. It is this union which forms ozone, or O3. The heat released by the ozone-forming process is the reason for the curious increase with altitude of the temperature of the stratosphere (the base of which is about 36,000 feet above the earth's surface).
While the natural chemical reaction produces about 4,500 tons of ozone per second in the stratosphere, this is offset by other natural chemical reactions which break down the ozone. By far the most significant involves nitric oxide (NO) which breaks ozone (O3) into molecules. This effect was discovered only in the last few years in studies of the environmental problems which might be encountered if large fleets of supersonic transport aircraft operate routinely in the lower stratosphere. According to a report by Dr. Harold S. Johnston, University of California at Berkeley--prepared for the Department of Transportation's Climatic Impact Assessment Program--it now appears that the NO reaction is normally responsible for 50 to 70 percent of the destruction of ozone.
In the natural environment, there is a variety of means for the production of NO and its transport into the stratosphere. Soil bacteria produce nitrous oxide (N2O) which enters the lower atmosphere and slowly diffuses into the stratosphere, where it reacts with free oxygen (O) to form two NO molecules. Another mechanism for NO production in the lower atmosphere may be lightning discharges, and while NO is quickly washed out of the lower atmosphere by rain, some of it may reach the stratosphere. Additional amounts of NO are produced directly in the stratosphere by cosmic rays from the sun and interstellar sources.
It is because of this catalytic role which nitric oxide plays in the destruction of ozone that it is important to consider the effects of high-yield nuclear explosions on the ozone layer. The nuclear fireball and the air entrained within it are subjected to great heat, followed by relatively rapid cooling. These conditions are ideal for the production of tremendous amounts of NO from the air. It has been estimated that as much as 5,000 tons of nitric oxide is produced for each megaton of nuclear explosive power.
What would be the effects of nitric oxides driven into the stratosphere by an all-out nuclear war, involving the detonation of 10,000 megatons of explosive force in the northern hemisphere? According to the recent National Academy of Sciences study, the nitric oxide produced by the weapons could reduce the ozone levels in the northern hemisphere by as much as 30 to 70 percent.
To begin with, a depleted ozone layer would reflect back to the earth's surface less heat than would normally be the case, thus causing a drop in temperature--perhaps enough to produce serious effects on agriculture. Other changes, such as increased amounts of dust or different vegetation, might subsequently reverse this drop in temperature--but on the other hand, it might increase it.
Probably more important, life on earth has largely evolved within the protective ozone shield and is presently adapted rather precisely to the amount of solar ultraviolet which does get through. To defend themselves against this low level of ultraviolet, evolved external shielding (feathers, fur, cuticular waxes on fruit), internal shielding (melanin pigment in human skin, flavenoids in plant tissue), avoidance strategies (plankton migration to greater depths in the daytime, shade-seeking by desert iguanas) and, in almost all organisms but placental mammals, elaborate mechanisms to repair photochemical damage.
It is possible, however, that a major increase in solar ultraviolet might overwhelm the defenses of some and perhaps many terrestrial life forms. Both direct and indirect damage would then occur among the bacteria, insects, plants, and other links in the ecosystems on which human well-being depends. This disruption, particularly if it occurred in the aftermath of a major war involving many other dislocations, could pose a serious additional threat to the recovery of postwar society. The National Academy of Sciences report concludes that in 20 years the ecological systems would have essentially recovered from the increase in ultraviolet radiation--though not necessarily from radioactivity or other damage in areas close to the war zone. However, a delayed effect of the increase in ultraviolet radiation would be an estimated 3 to 30 percent increase in skin cancer for 40 years in the Northern Hemisphere's mid-latitudes.

We have considered the problems of large-scale nuclear war from the standpoint of the countries not under direct attack, and the difficulties they might encounter in postwar recovery. It is true that most of the horror and tragedy of nuclear war would be visited on the populations subject to direct attack, who would doubtless have to cope with extreme and perhaps insuperable obstacles in seeking to reestablish their own societies. It is no less apparent, however, that other nations, including those remote from the combat, could suffer heavily because of damage to the global environment.
Finally, at least brief mention should be made of the global effects resulting from disruption of economic activities and communications. Since 1970, an increasing fraction of the human race has been losing the battle for self-sufficiency in food, and must rely on heavy imports. A major disruption of agriculture and transportation in the grain-exporting and manufacturing countries could thus prove disastrous to countries importing food, farm machinery, and fertilizers--especially those which are already struggling with the threat of widespread starvation. Moreover, virtually every economic area, from food and medicines to fuel and growth engendering industries, the less-developed countries would find they could not rely on the "undamaged" remainder of the developed world for trade essentials: in the wake of a nuclear war the industrial powers directly involved would themselves have to compete for resources with those countries that today are described as "less-developed."
Similarly, the disruption of international communications--satellites, cables, and even high frequency radio links--could be a major obstacle to international recovery efforts.
In attempting to project the after-effects of a major nuclear war, we have considered separately the various kinds of damage that could occur. It is also quite possible, however, that interactions might take place among these effects, so that one type of damage would couple with another to produce new and unexpected hazards. For example, we can assess individually the consequences of heavy worldwide radiation fallout and increased solar ultraviolet, but we do not know whether the two acting together might significantly increase human, animal, or plant susceptibility to disease. We can conclude that massive dust injection into the stratosphere, even greater in scale than Krakatoa, is unlikely by itself to produce significant climatic and environmental change, but we cannot rule out interactions with other phenomena, such as ozone depletion, which might produce utterly unexpected results.
We have come to realize that nuclear weapons can be as unpredictable as they are deadly in their effects. Despite some 30 years of development and study, there is still much that we do not know. This is particularly true when we consider the global effects of a large-scale nuclear war.

Nuclear Weapons Yield
The most widely used standard for measuring the power of nuclear weapons is "yield," expressed as the quantity of chemical explosive (TNT) that would produce the same energy release. The first atomic weapon which leveled Hiroshima in 1945, had a yield of 13 kilotons; that is, the explosive power of 13,000 tons of TNT. (The largest conventional bomb dropped in World War II contained about 10 tons of TNT.)
Since Hiroshima, the yields or explosive power of nuclear weapons have vastly increased. The world's largest nuclear detonation, set off in 1962 by the Soviet Union, had a yield of 58 megatons--equivalent to 58 million tons of TNT. A modern ballistic missile may carry warhead yields up to 20 or more megatons.
Even the most violent wars of recent history have been relatively limited in terms of the total destructive power of the non-nuclear weapons used. A single aircraft or ballistic missile today can carry a nuclear explosive force surpassing that of all the non-nuclear bombs used in recent wars. The number of nuclear bombs and missiles the superpowers now possess runs into the thousands.

Nuclear Weapons Design
Nuclear weapons depend on two fundamentally different types of nuclear reactions, each of which releases energy:
Fission, which involves the splitting of heavy elements (e.g. uranium); and fusion, which involves the combining of light elements (e.g. hydrogen).
Fission requires that a minimum amount of material or "critical mass" be brought together in contact for the nuclear explosion to take place. The more efficient fission weapons tend to fall in the yield range of tens of kilotons. Higher explosive yields become increasingly complex and impractical.
Nuclear fusion permits the design of weapons of virtually limitless power. In fusion, according to nuclear theory, when the nuclei of light atoms like hydrogen are joined, the mass of the fused nucleus is lighter than the two original nuclei; the loss is expressed as energy. By the 1930's, physicists had concluded that this was the process which powered the sun and stars; but the nuclear fusion process remained only of theoretical interest until it was discovered that an atomic fission bomb might be used as a "trigger" to produce, within one- or two-millionths of a second, the intense pressure and temperature necessary to set off the fusion reaction.
Fusion permits the design of weapons of almost limitless power, using materials that are far less costly.

Radioactivity
Most familiar natural elements like hydrogen, oxygen, gold, and lead are stable, and enduring unless acted upon by outside forces. But almost all elements can exist in unstable forms. The nuclei of these unstable "isotopes," as they are called, are "uncomfortable" with the particular mixture of nuclear particles comprising them, and they decrease this internal stress through the process of radioactive decay.
The three basic modes of radioactive decay are the emission of alpha, beta and gamma radiation:
Alpha--Unstable nuclei frequently emit alpha particles, actually helium nuclei consisting of two protons and two neutrons. By far the most massive of the decay particles, it is also the slowest, rarely exceeding one-tenth the velocity of light. As a result, its penetrating power is weak, and it can usually be stopped by a piece of paper. But if alpha emitters like plutonium are incorporated in the body, they pose a serious cancer threat.
Beta--Another form of radioactive decay is the emission of a beta particle, or electron. The beta particle has only about one seven-thousandth the mass of the alpha particle, but its velocity is very much greater, as much as eight-tenths the velocity of light. As a result, beta particles can penetrate far more deeply into bodily tissue and external doses of beta radiation represent a significantly greater threat than the slower, heavier alpha particles. Beta-emitting isotopes are as harmful as alpha emitters if taken up by the body.
Gamma--In some decay processes, the emission is a photon having no mass at all and traveling at the speed of light. Radio waves, visible light, radiant heat, and X-rays are all photons, differing only in the energy level each carries. The gamma ray is similar to the X-ray photon, but far more penetrating (it can traverse several inches of concrete). It is capable of doing great damage in the body.
Common to all three types of nuclear decay radiation is their ability to ionize (i.e., unbalance electrically) the neutral atoms through which they pass, that is, give them a net electrical charge. The alpha particle, carrying a positive electrical charge, pulls electrons from the atoms through which it passes, while negatively charged beta particles can push electrons out of neutral atoms. If energetic betas pass sufficiently close to atomic nuclei, they can produce X-rays which themselves can ionize additional neutral atoms. Massless but energetic gamma rays can knock electrons out of neutral atoms in the same fashion as X-rays, leaving them ionized. A single particle of radiation can ionize hundreds of neutral atoms in the tissue in multiple collisions before all its energy is absorbed. This disrupts the chemical bonds for critically important cell structures like the cytoplasm, which carries the cell's genetic blueprints, and also produces chemical constituents which can cause as much damage as the original ionizing radiation.
For convenience, a unit of radiation dose called the "rad" has been adopted. It measures the amount of ionization produced per unit volume by the particles from radioactive decay.

Nuclear Half-Life
The concept of "half-life" is basic to an understanding of radioactive decay of unstable nuclei.
Unlike physical "systems"--bacteria, animals, men and stars--unstable isotopes do not individually have a predictable life span. There is no way of forecasting when a single unstable nucleus will decay.
Nevertheless, it is possible to get around the random behavior of an individual nucleus by dealing statistically with large numbers of nuclei of a particular radioactive isotope. In the case of thorium-232, for example, radioactive decay proceeds so slowly that 14 billion years must elapse before one-half of an initial quantity decayed to a more stable configuration. Thus the half-life of this isotope is 14 billion years. After the elapse of second half-life (another 14 billion years), only one-fourth of the original quantity of thorium-232 would remain, one eighth after the third half-life, and so on.
Most manmade radioactive isotopes have much shorter half-lives, ranging from seconds or days up to thousands of years. Plutonium-239 (a manmade isotope) has a half-life of 24,000 years.
For the most common uranium isotope, U-238, the half-life is 4.5 billion years, about the age of the solar system. The much scarcer, fissionable isotope of uranium, U-235, has a half-life of 700 million years, indicating that its present abundance is only about 1 percent of the amount present when the solar system was born.

Oxygen, Ozone and Ultraviolet Radiation
Oxygen, vital to breathing creatures, constitutes about one-fifth of the earth's atmosphere. It occasionally occurs as a single atom in the atmosphere at high temperature, but it usually combines with a second oxygen atom to form molecular oxygen (O2). The oxygen in the air we breathe consists primarily of this stable form.
Oxygen has also a third chemical form in which three oxygen atoms are bound together in a single molecule (03), called ozone. Though less stable and far more rare than O2, and principally confined to upper levels of the stratosphere, both molecular oxygen and ozone play a vital role in shielding the earth from harmful components of solar radiation.
Most harmful radiation is in the "ultraviolet" region of the solar spectrum, invisible to the eye at short wavelengths (under 3,000 A). (An angstrom unit--A--is an exceedingly short unit of length--10 billionths of a centimeter, or about 4 billionths of an inch.) Unlike X-rays, ultraviolet photons are not "hard" enough to ionize atoms, but pack enough energy to break down the chemical bonds of molecules in living cells and produce a variety of biological and genetic abnormalities, including tumors and cancers.
Fortunately, because of the earth's atmosphere, only a trace of this dangerous ultraviolet radiation actually reaches the earth. By the time sunlight reaches the top of the stratosphere, at about 30 miles altitude, almost all the radiation shorter than 1,900 A has been absorbed by molecules of nitrogen and oxygen. Within the stratosphere itself, molecular oxygen (02) absorbs the longer wavelengths of ultraviolet, up to 2,420 A; and ozone (O3) is formed as a result of this absorption process. It is this ozone then which absorbs almost all of the remaining ultraviolet wavelengths up to about 3,000 A, so that almost all of the dangerous solar radiation is cut off before it reaches the earth's surface. 

1 Comments:

Anonymous said...

Excellent

Post a Comment