THE CEREBRAL MECHANISM OF SPEECH AND SONG


Neither vocalization nor articulation are essentially human. Many of the lower animals, e.g. parrots, possess the power of articulate speech, and birds can be taught to pipe tunes. The essential difference between the articulate speech of the parrot and the human being is that the parrot merely imitates sounds, it does not employ these articulate sounds to express judgments; likewise there are imbecile human beings who, parrot-like, repeat phrases which are meaningless.
Articulate speech, even when employed by a primitive savage, always expresses a judgment. Even in the simple psychic process of recalling the name aroused by the sight of a common object in daily use, and in affixing the verbal sign to that object, a judgment is expressed. But that judgment is based upon innumerable experiences primarily acquired through our special senses, whereby we have obtained a knowledge of the properties and uses of the object. This statement implies that the whole brain is consciously and unconsciously in action. There is, however, a concentration of psychic action in those portions of the brain which are essential for articulate speech; consequently the word, as it is mentally heard, mentally seen, and mentally felt (by the movements of the jaw, tongue, lips, and soft palate), occupies the field of clear consciousness; but the concept is also the nucleus of an immense constellation of subconscious psychic processes with which it has been associated by experiences in the past. In language, articulate sounds are generally employed as objective signs attached to objects with which they have no natural tie.

In considering the relation of the Brain to the Voice we have not only a physiological but a psychological problem to deal with. Since language is essentially a human attribute, we can only study the relation of the Brain to Speech by observations on human beings who during life have suffered from various speech defects, and then correlate these defects with the anatomical changes found in the brain after death.

Between the vocal instrument of the primitive savage and that of the most cultured singer or orator there is little or no discoverable difference; neither by careful naked-eye inspection of the brain, nor aided by the highest powers of the microscope, should we be able to discover any sufficient structural difference to account for the great difference in the powers of performance of the vocal instrument of the one as compared with that of the other; nor is there any sufficient difference in size or minute structure of the brain to account for the vast store of intellectual experiences and knowledge of the one as compared with the other. The cultured being descended from cultured beings inherits tendencies whereby particular modes of motion or vibration which have been experienced by ancestors are more readily aroused in the central nervous system; when similar stimuli producing similar modes of motion affect the sense organs. But suppose there were an island inhabited only by deaf mutes, upon which a ship was wrecked, and the sole survivors of the wreck were infants who had never used the voice except for crying, would these infants acquire articulate speech and musical vocalisation? I should answer, No. They would only be able to imitate the deaf mutes in their gesture language and possibly the musical sounds of birds; for the language a child learns is that which it hears; they might however develop a simple natural language to express their emotions by vocal sounds. The child of English-speaking parents would not be able spontaneously to utter English words if born in a foreign country and left soon after birth amongst people who could not speak a word of English, although it would possess a potential facility to speak the language of its ancestors and race.

It is necessary, however, before proceeding further, to say a few words explanatory of the brain and its structure. The brain consists of  the great brain or cerebrum,  the small brain or cerebellum, and  the stem of the brain, which is continuous with the spinal cord. The cerebro-spinal axis consists of grey matter and white matter. The grey matter covers the surface of the cerebrum and cerebellum, the white matter being internal. The stem of the brain, the medulla oblongata, and the spinal cord, consists externally of white matter, the grey matter being internal. The grey matter consists for the most part of nerve cells (ganglion cells), and the white matter consists of nerve fibres; it is white on account of the phosphoretted fatty sheath—myelin—that covers the essential axial conducting portion of the nerve fibres. If, however, the nervous system be examined microscopically by suitable staining methods, it will be found that the grey and white matters are inseparably connected, for the axial fibres of the nerves in the white matter are really prolongations of the ganglion cells of the grey matter; in fact the nervous system consists of countless myriads of nervous units or neurones; and although there are structural differences in the nervous units or neurones, they are all constructed on the same general architectural plan . They may be divided into groups, systems, and communities; but there are structural differences of the separate systems, groups, and communities which may be correlated with differences of function. The systems may be divided into:  afferent sensory, including the special senses and general sensibility;  motor efferent; association.
The great brain or cerebrum consists of two halves equal in weight, termed hemispheres, right and left; and the grey matter covering their surface is thrown into folds with fissures between, thus increasing enormously the superficial area of the grey matter and of the neurones of which it consists without increasing the size of the head. The pattern of the folds or convolutions shows a general similarity in all human beings, certain fissures being always present; and around these fissures which are constantly present are situated fibre systems and communities of neurones having particular functions. Thus there is a significance in the convolutional pattern of the brain. But just as there are no two faces alike, so there are no two brains alike in their pattern; and just as it is rare to find the two halves of the face quite symmetrical, so the two halves of the brain are seldom exactly alike in their pattern. Although each hemisphere is especially related to the opposite half of the body, the two are unified in function by a great bridge of nerve fibres, called the corpus callosum, which unites them. The cortical centres or structures with specialised functions localised in particular regions of one hemisphere are associated by fibres passing to the same region in the opposite hemisphere by this bridge.
Muscles and groups of muscles on the two sides of the body which invariably act together may thus be innervated from either hemisphere, e.g. the muscles of the larynx, the trunk, and upper part of the face.

Gall, the founder of the doctrine of Phrenology, wrecked his fame as a scientist by associating mental faculties with conditions of the skull instead of conditions of the brain beneath; nevertheless, he deserves the highest credit for his discoveries and deductions, for he was the first to point out that that part of the brain with which psychic processes are connected must be the cerebral hemispheres. He said, if we compare man with animals we find that the sensory functions of animals are much finer and more highly developed than in man; in man, on the other hand, we find intelligence much more highly developed than in animals. Upon comparing the corresponding anatomical conditions, we see, he said, that in animals the deeper situated parts of the brain are relatively more developed and the hemispheres less developed than in man; in man, the hemispheres so surpass in development those of animals that we can find no analogy. Gall therefore argued that we must consider the cerebral hemispheres to be the seat of the higher functions of the mind. We must moreover acknowledge that the following deductions of Gall are quite sound: "The convolutions ought to be recognised as the parts where the instincts, feelings, thoughts, talents, the affective qualities in general, and the moral and intellectual forces are exercised." The Paris Academy of Science appointed a commission of inquiry, May, 1808, which declared the doctrine of Gall to be erroneous. Gall moreover surmised that the faculty of language lay in the frontal lobes, and Bouillaud supported Gall's proposition by citing cases in which speech had been affected during life, and in which after death the frontal lobes were found to be damaged by disease. A great controversy ensued in France; popular imagination was stirred up especially in the republic by the doctrine of Gall, which was an attempt to materialise and localise psychic processes. Unfortunately Gall's imagination, encouraged by a widespread wave of popular sympathy, overstepped his judgment and launched him into speculative hypotheses unsupported by facts. His doctrine of Phrenology was shown to be absolutely illogical; consequently it was forgotten that he was the pioneer of cerebral localisation.

0 Comments:

Post a Comment